```
Definition:
                                  (x , D)
                    · log pair
                                     1 effective IR - divisor
                    \cdot a(E, X, D): discrepancy of E with respect to K_X + D
                    · discr(x, D) = \inf_{E} \{a(E, X, D) \mid wdim Center_{X}(E) \ge 2\}
                    . total discr (X, D) = \inf_{E} \{ a(E, X, D) \mid codim Center x(E) > 1 \}
                    • log pair (X,B) is said to be \varepsilon-log terminal if total discr (X,B)>-1+\varepsilon
                                                                     E-log canonical if totaldiscr (x, B) > 1+2
                         (x,B) be a log pair of global type (X is projective)
                            Log Fano variety (LF) if K+B is lc and - (K+B) is ample
                            week log Fano (WLF) if K+B is lc and -(K+B) is net and big
                            log semi-Fano (ls-Fano) if K+B is 1c and -(K+B) is nef
                             0-\log pair if K+B is lc and numerically trivial (\pi_1(x)=0 \text{ or } q(x)=0)
                             also called a log Calabi-Yan variety
                      · X normal projective variety.
                            X is Fano type (FT) if it satisfies the following equivalent conditions,
                                     \exists (Q-boundary \Delta s.t. (X, \Delta) is a klt log Fano
                                      \exists 1Q-boundary \triangle s.t. (x, \triangle) is a klt weak \log Fano
                                    \exists IQ-boundary \triangle S.t (x, \triangle) is a klt 0-pair and the components of \triangle
                            (iii)
                                      For any divisor D, 3 a 1Q-boundary & s.t
                                                                               (X, \Delta) is a kit 0-pair and supp D \subset Supp \Delta
                           X normal variety , D is IR-divisor
                             IQ -complement of Kx+D is a log divisor Kx+D' sit. D'\gg D, Kx+D' is le
                                                                                                          and n(kx+D')~0 for some neZ/70
                                                                     5 ≥0 effective integral LBJ ≤0
                              let 0 = S+ B
                                            no common components,
                              n - complement of kx + D is kx + D^+ s,t
                               (i) n(K_X + D^+) \sim 0 (in particular, nD^+ is an integral divisor)
                                      K_X + D^+ is le
                                       UD+ > u2 + r(u+1)B]
                            Note that: an n-complement is not necessarily a 10-complement
                           · Alexeev's Borisov's
                                 Conjecture 1
                                 Fix a real number & >0.
                                (x, B = \Sigma bi Bi) d-dimensional, le, -(Kx+B) nef (semi-Fano vaniety)
                                             (i) K+B is E-lt
                                                                                                     ( 3 some boundary \triangle sit (X, \triangle) is )
                                                (ii) X Found type (FT)
                                                                                                             a kit log Fano variety
                                 Then X bolongs to an algebraic family i.e. X is bounded in the moduli space
                                Toric case was proved
                               Conjecture 2: Log Canonical Adjunction
                                                                                                                                      (7.13.2)
                                                       + Particular Case of Effective log Abundance Conjecture
                                                                                                                                     (7, 13.3)
                                                       + Effective Ajunction
                            Notations, for a subset \mathcal{R} \subset \mathbb{R}_{>0}. \[ \[ \mathcal{R} \] := \{ \[ \] \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[\] \[ \] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\
                                               If \mathcal{R} = \{0,1\}, \bar{\mathbb{P}}(\mathcal{R}) is the set of standard multiplicities
                                                                                                                                               if BEQ(R)
                              a class of (relative) log pairs (X/Z \ni 0, B), a point on each Z \in \mathcal{Z}
                          This class has bounded complements if I a constant C s.t
                           for any log pair (X/Z, B) \in (\mathcal{X}/\mathcal{Z}, B), the log divisor K+B is n - complement
                                                                                               near the fiber over 0 for some n & C
                          Main Theorem 1
                           Fix a finite subset 22 C [",1] N 1Q
                                     (x, B) (kit log semi- Fano variety) (i.e. k+B is 1c and -(k+B) is nef)
                                           multiplicities of BE P(R) (i.e. B has hyperstandard multiplicities with
                                                                                                 respect to R )
                          Assume: LMMP in dim = d
                                         Conjecture 1 and Conjecture 2 hold in dim & d
                          Then: K+B has bounded complements: \exists P positive integer n = n(d, Q)
                                     divisible by denominators of all r \in \mathcal{R}, s.t. K+B is n - complemented
                                      Moreover, K+B is nI - complemented for ∀ I∈ Z/>0
                                                                                        S:= LBJ D= B-S
                                               |nK-ns-L(n+1) D] | # $
                           <sup>1</sup>n particular
                                       If B=0 1-hK| $ p and n depends only on d
                        Main Theorem 2
                         Fix a finite subset 20 C [0,1] NIQ
                         (x, B) be a 0- pair (log CY variety)
                        dim=d FT multiplicities of B & Q (Q)
                           Assume: LMMP in dim = d
                                           Conjecture 1 and Conjecture 2 hold in dim & d
                                    \exists a positive integer n=n(d,\mathcal{R}) s.t n(kx+B)\sim 0
                 Notation: B: a finite set of prime divisors Bi
                                 \mathcal{D}_{\mathcal{B}} := \left\{ |R - \text{weil divisors } B \mid \text{Supp } B = \sum_{B_i \in \mathcal{B}} B_i \right\}
                                  IR - veutor space
                                \mathcal{T}_{B} := \left\{ \begin{array}{l} \Sigma \, \beta_i \, B_i \, \in \, \mathcal{D}_{B} \, \left| \, \, o \in \beta_i \in I \right. , \, \, \forall \, i \, \, \right\} \right.
                              unit cube in DB
                   lemma 1 (x, B) log pair B is IR-boundary.
                                Assume K+B is n-complemented.
                                Then \exists constant \xi = \xi(X, B, n) > 0 s. t. K+B' is also n-complemented for
                                                                                                          ( || B || = max ( | b, |, ..., | br | ) )
                                 any IR-boundary B'& DB with IB-B' | < 2
                                 The existence of n - complements is an open condition in the space of all
                                 boundaries B with fixed Supp B
                      prop.1 Fix a positive integer I . X FT variety , K_X Q-Cartier
                                                                   Let B_1 - B_1 = \sum_{i=1}^{r} B_i
                                   Then for any boundary B \in \mathcal{T}_{\mathcal{B}} s.t. K + B is C and C(K + B) is net,
                                   there is an n-complement of K+B for some n \in Const(X,B) and 1/n
                                                                                                  Adjunction on divisors
                                 (x, B = Sb; B;) klt log semi-fano
                    setup.
                                                                                                  RC IR>0
                                                                                                 \overline{\mathbb{Q}} := \left\{ \begin{array}{l} r_0 - m\sum\limits_{i=1}^{S} \left( 1 - \gamma_i^* \right) \; \middle| \; \gamma_0, \cdots, \; \gamma_S \in \mathbb{R} \; \middle| \; m \in \mathbb{Z}, \; m > 0 \right\} \cap \mathbb{R}_{\geqslant 0}
                                           Q-divisor
                                    Main theorem 1 and 2 hold in dimension d-
                                                                                                                                                                    R finite => sup Nd (R)
                                                                                                 \mathcal{N}_{d}(\mathcal{R}) := \{ m \in \mathbb{Z}' > 0 \mid \exists \text{ log semi} - \text{Fano variety } (x,D) \}
                     By this inductive hypothesis,
                                                                                                                            of dim d satisfying (i) (ii) (iii)
                     whenever \mathcal{R} \subset [0,1] \ \ \Rightarrow \ \ \mathcal{R}_{d-1}(\bar{\mathcal{R}}) > 0
                                                                                                 (i) X is FT and DE更(配)
                                                                                                                                                                                         No(>0
                                                                                                 (11) either (X, D) is kit on k_X + D \equiv D
                                                                       Put ] := 1(R)
                        Take any 0 < \epsilon' \le \epsilon_{d-1}(\overline{R}).
                                                                                                 (lii) Kx + D is m- complemented, 1(R) /m, and
           (1.1) • (x, B) is s'-1t ⇒ B ∈ ₱(R) ∩ [0, + £']
                                                                                                       m is minimal under these conditions
                                                             11 conjecture 1
                                                                                                N_d = N_d(\mathcal{R}) := \sup \mathcal{N}_d(\mathcal{R}),
                         are contained in this finite set
                                                                                                \xi_{d} = \xi_{d}(\mathcal{R}); = \frac{1}{(N_{d} + \lambda)}
                                                       (X,B) is bounded
                     Hence (X, Supp B) belongs to an algebraic family
                     assume the multipligities of B are fixed
                        Let m:=nI K+B is m- complemented
                        \exists \ \overline{B} \in \left[ -K - \left\lfloor {\binom{m+1}{B}} \right\rfloor \right] \text{ s.t. } \left( X, \frac{1}{m} \left( \left\lfloor {\binom{m+1}{B}} \right\rfloor + \overline{B} \right) \right) \text{ is } \text{ lc.} \right)
                                                 open in the deformation space of (X, SuppB)
                                               \} \Rightarrow \log \text{ divisor } K+B \text{ has a bounded } n]-\text{ complement } \text{for some } n \in C(d, R)
                     By proplabove
                      Noetherian induction
                  • Now we only need to consider the case (X,B) is not \epsilon'- lt
      (A) "Replace
                     (x,B) \longrightarrow log crepant 1Q - factorial blowup of all divisors E of discrepancy <math>a(E,X,B) \le -1+\epsilon'
                     B \in \Phi(\mathcal{R}) \longrightarrow B \in \Phi(\mathcal{R}, \underline{\epsilon'}) \cap \mathcal{Q}
                                                                                        →(R ビ) := @(R) U[ ト ٤', 1]
                      New X is also FT
                            assume X Q - factorial and
                                                                          \operatorname{discr}(X,B) > -1 + \varepsilon'
                                Take some no >> 0 sufficient large
                                n_0B is integral and |-n_0(k+B)| is base point free
                                                              general nember
                                                                  \operatorname{discr}(X,\Theta) = \operatorname{discr}(X,B)
                                                                                  Bertini's theorem
                                                                                                                     no (Kxt
                                       * K_X + \Theta is a kit IQ - complement of K_X + B
                                      · discr (x, ⊖) ≥ 1+ €'
                                      · O-B is supported in a movable divisor
         A new boundary D: = 5 di Bi
                                                                                                                                                                                          near each point
                          (Supp D = Supp B
                                                                     lemma: (the simplest case of the global to local statemat.)
                           D E 更(风)
                                                                             Fix a finite set RC[0,1] ∩ IQ let (X > 0, D) be the
                                                                                                                                                                              NH(E)
                            D > B
                                                                                                                                                                                            Pn ⊃ ₹ (R, E)
                           L0] # 0 <
                                                                             germ of a Q - fautified kit d- dimensional singularity
                           (×, D) is le 🗸
                                                                                                                                                                                  B^{+} \geqslant B
                                                                                                               n-complement of kx + D.
                                                                                                                                                                              nB+ is integral for any component of D-B
           • (B) Run - (K+0) - MMP
                                                                                                                Non (R)
                                                                                                                                                                              B^+ \geqslant D \Rightarrow (x,p) is le near
                    X is FT
                                                  K+B \ge 0 and -(K+D)-MMP
                                                                                                conincides
                    If X is not FT
                                                                    K+B- S(D-B)-MMP
                                                                    for some small $>0
                  . B∈ (R, E')
                                                                                                           preserved on each step
                 • All birational transformation are (k + 0) - crepart \Rightarrow k + 0 is kit
                                                                                          IJ B ≤ Ð
                                                                                      k+B is klt
                   · (x,D) is le
                   · × FT
                                None of components of LDJ is contracted.
               Claim 1
                                          proof: Let \varphi: X \to X be a K+D-positive extremal contraction

U

E corresponding exceptional divisor
              Proof
                                              Assume ECLDJ. Let D: = 9+ D
                                               Kx+D is Y-ample \Rightarrow we can write <math>Kx+D=Y^*(K_{\overline{X}}+\overline{D})-dE, a>0
                                        (\bar{X}, \bar{D}) is lc \Rightarrow -1 \leq a(E, \bar{X}, \bar{D}) = a(E, X, D) - d = -1 - d < -1 contradiction

    (C) Reduction. a number of divisorial contractions and flips

                                     X ---> X, ---> XN = Y,
                                    we get a 1Q - factorial model Y s.t.
                          either · 3 p. y -> Z
                                       a non-birational K_Y + D_Y - positive extremal contraction
                                       to a lower - dimensional vorriety Z
                              or · - (ky+Dy) is nef
                    In first ( \omega_{x} , Z is a point i.e., \rho(\gamma)=1 and -(k_{\gamma}+B_{\gamma}) is nef
     · Now we have Y: Q - factorial, FT
             Two boundaries B_{\Upsilon} = \Sigma b_i B_i S_{t} \begin{cases} discr (\Upsilon, B_{\Upsilon}) > -1 + \epsilon' \\ B_{\Upsilon} \in \Phi(\mathcal{R}, \epsilon') \\ N \end{cases} d_i > b_i \iff d_i = 1 and b_i > +1 \epsilon' D_{\Upsilon} \in \Phi(\mathcal{R})
        One of the following two cases, holds
    Two cases, P(Y)=1, Ky+Dy is ample, (Y, By) kit log semi-Fano variety.
              or (Y, D_T) log semi-Fano LD_T \rfloor \neq 0 (if K+B=0, the case does not occur) treated in latter section
    outline of the proof of Main Theorem 1
   sketch the idea in the proof of boundedness in
                                                                                                       Prop 2 f: Y \longrightarrow X binational Contraction
          we only need to consider
(II) \Rightarrow (\lambda, B) is not \epsilon'-It
                                                                                                       D is IR-divisor on Y sit
           Do construction (A) (B) (C)
           In each steps of divisorial contactions and flips in (C)
                                                                                                       (i) Ky+D is nef one X
                                                                                                      (ii) faD € Pn := { | sa ≤ | , L(n+1) a ] > nd }
          We contract an extremal ray
(K+D) = positive
                                                                                                      Kx + f. D is n- complemented
           we can pull back n-complements of KT+D \gamma \in \mathcal{N}_d(\mathcal{R}) to original \chi.
                                                                                                         Ky+ D is n-complemented
            P(\Upsilon)=1, it possible that k_{\Upsilon}+D_{\Upsilon} has no complements
            Section 6 => bi < 1-C, where c>0 the multiplicities of By are boundled from the above
                              divisorial contractions in (C) do not contract
            Claim 1 =
                                  components of B with b; > 1- &'
             B is also bounded from above. \} \Rightarrow (X, Supp B) belong to \Rightarrow discr(X, B) > -1 + E' an algebraic family
 each step
                                 Conjecture 1
                     Noetherian induction => assume (X, suppls) is fixed
                           By Prop 1. (x, B) has bounded complements
                                                                                                                      Proof of Main theorem 2 in the case when (X,B) is not kit
              Lemma 2. (X, B = \Sigma biBi) 0-pair of dimension d s.t
                                             B \in \Phi(\mathcal{R}, \mathcal{E}'), where \mathcal{E}' = \mathcal{E}_{d-1}(\bar{\mathcal{R}}).
                  Assume the LMMP in dim d
                  Assume either (i) (X, B) is not kit and Main theorem 1 and 2 hold
                                                 in dimension d-1
                                 OY (ii) Main Theorem 2. noteds in dim d
              Then \exists \lambda := \lambda(d, \mathcal{R}) > 0 s.t either b_i = 1 or b_i \leq 1 - \lambda for all b_i
                                               a(E, X, B) = 1 or a(E, X, B) \in 1-\lambda for any divisor on X
        . Corollary of lemma 2
                                                                                                              (exceptional or not)
  · Proof of Main theorem 2 in the case when (X,B) is not kit
          (X, B) o-pair not kit
          FT J(R)
           Replace (X, B) its Q-factorial oll modification
                                                                                            \Rightarrow X is klt
                                                                                                      LB]≠0
```

B ∈ ⊉(R)

Let $0 < \lambda < \lambda(d, \mathbb{R})$ Coro of Lenna?

Then we have (x, 13) o-pair

If X is not λ -lt =) $a(E, X, 0) < -1 + \lambda$ for each exceptional divisor E

By our construction (X', B') not kit 0-pair 1 λ-lt [(R)

Prop 2 \Rightarrow we can pull back n-complements from x' to X if $1(R) \mid n$

a(E x, B)=1

As in (A) replace (x,B) >> blow up of all such divisors E

· Run K-MMP: X ----> X' B'is biration transform of B

K-negative Fano fibration

(111) => (X', supp B') belong to an algebraic family

Case 2 dim Z'>0 treated by results in latter sections.

)-16 (R) [B] ≠0

 $\beta \neq 0 \Rightarrow \exists X' \longrightarrow Z' \quad dim Z' < dim X'$

Case 1 : z' is a point \Rightarrow $\begin{cases} p(x')=1 \\ x'$ is kit Fano